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Magneto-optical Kerr effect in bilayer structures
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Abstract. This paper describes the magneto-optical effects and the reflectivity behaviors of bilayers based
on magnetic and isotropic (MgF2)/anisotropic (TiO2) layers under the condition of total internal reflection.
In the framework of Green’s dyadic technique, we show accurately the optical properties of anisotropic
layers deposited on a substrate. We present numerical simulations which account for the variation of angle
of incidence at the HeNe laser wavelength. The Kerr rotation is found to increase significantly around
the optical modes in total reflection. We also discuss the importance of anisotropic effects due to the
crystallization of the dielectric material (TiO2) which occur in the reflectivity and Kerr rotation spectra.

PACS. 78.20.Ci Optical constants (including refractive index, complex dielectric constant, absorption,
reflection and transmission coefficients, emissivity) – 78.20.Ls Magnetooptical effects – 78.66.-w Optical
properties of specific thin films, surfaces, and low-dimensional structures

1 Introduction

The magneto-optical Kerr effect has become an important
magnetic characterization technique in the topic of mag-
netic ultrathin films and multilayers [1–3] and is also used
in optical reading devices [4–8]. Recent works have studied
the Kerr effect of multilayers made of magnetic materials
by illuminating through a transparent substrate at fixed
wavelength as a function of the angle of incidence [9], this
brings to the fore the role of surface plasmon [10,11] in
the magneto-optical signal.

In this paper, we analyse accurately other kinds of res-
onances occurring in the reflectivity and in the magneto-
optical Kerr rotation module as a function of the angle of
incidence for a multilayer system, and especially the inter-
ferences in dielectric films [12]. In this context, we study
theoretically phenomena relative to bilayers composed of a
magneto-optical film and an isotropic/anisotropic dielec-
tric layer deposited on a glass substrate for the HeNe laser
wavelength (λ = 633 nm). We underline the role of reso-
nance phenomena in the bilayer structure. The numerical
method used for these calculations is based on the Green’s
dyadic technique [13,14] which can account for any kind
of linear anisotropy. The films are illuminated through
the substrate beyond the critical angle for total internal
reflection. The two polarization modes TE and TM are
considered for the incident electric field associated to the
laser beam. In the TE mode, the incident electric field is
perpendicular to the plane of incidence (the so-called s-
polarization) whereas this field is parallel to it in the TM
mode (the p-polarization).

a e-mail: Nicolas.Richard@physik.uni-ulm.de

2 Optical properties of an anisotropic
multilayer system

2.1 Scattering theory

Our theoretical analysis of the propagation of electromag-
netic fields through an arbitrary anisotropic multilayered
structure is based on scattering theory. In this theory, one
describes the scattering of waves relative to a reference
system. In the context of multilayers, it is convenient to
choose such a system as the single surface geometry made
of two semi-infinite isotropic media [15]. Let ε1(z, ω) be
the frequency (ω) dependent dielectric function profile of
this surface system.

Assuming that the fields have an harmonic time
dependence e−i ω t in Maxwell’s equations, the vectorial
wave equation satisfied by the electric field is (c is the
speed of light in vacuum):

−∇×∇×E(r) +
ω2

c2
ε1(z, ω) E(r) = V(z, ω) E(r). (1)

For z > 0, ε1(z, ω) corresponds to the dielectric function
of the external medium:

ε1(z, ω) = εa(ω),

while for z < 0, ε1(z, ω) is given by the dielectric function
of the substrate:

ε1(z, ω) = εsub(ω).

The perturbation dyadic V(z, ω) is defined by (Fig. 1a):

V(z, ω) =
ω2

c2
(1 εa(ω)− ε(z, ω)) (z > 0), (2)

V(z, ω) = 0 (z < 0), (3)
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Fig. 1. (a) Geometry of the system. We define r = r‖+z ez, r′ = r′‖+z′ ez and k = k‖+kz ez, the cylindrical coordinates (ex,
eρ, eφ) are used to define the Kerr effect. The radial coordinate eρ is aligned along the reflected wavevector. (b) Configuration
of total reflection in the case of a bilayer Co/MgF2 with e1 = 100 nm, 200 nm and 400 nm, e2 = 10 nm and in the case of a
bilayer Co/TiO2 with e1 = 450 nm and e2 = 10 nm. (c) Configuration of total reflection in the case of a bilayer MgF2/Co with
e1 = 100 nm and e2 = 2000 nm and in the case of a bilayer TiO2/Co with e1 = 100 nm and e2 = 1100 nm.

ε(z, ω) is the dielectric tensor of the multilayered struc-
ture which is located in the upper z plane (z′ > 0). The
structure of this tensor is not limited to magneto-optical
materials. It can account for any kind of linear anisotropy.

The solution of the scattering problem is given by the
Lippmann-Schwinger equation:

E(r) = E0(r) + Es(r) (4)

where E0(r) and Es(r) are the incident and the scattered
field.

The scattered field is given by (A is the domain where
V(z′, ω) 6= 0):

Es(r) =
∫
A

dr ′ G(r, r ′;ω) V(z′, ω) E(r ′). (5)

In this last equation, G(r, r ′;ω) is the Green’s dyadic
defined by (δ(r − r ′) is the Dirac delta function):

−∇×∇× G(r, r ′;ω) +
ω2

c2
ε1(z, ω) G(r, r ′;ω)

= 1 δ(r− r ′). (6)

The planar symmetry of multilayered structures allows
the introduction of following Fourier expansions for the
fields and the propagator involved in (4, 5) and (6):

E(r) =
1

4 π2

∫
dk‖ F(z; k‖) ei k‖·r‖ (7)

E0(r) =
1

4 π2

∫
dk‖ F0(z; k‖) ei k‖·r‖ (8)

G(r, r ′;ω) =
1

4 π2

∫
dk‖ ei k‖·(r‖−r‖

′) g(z , z′; k‖). (9)

The introduction of the Fourier transforms (7–9) in
equation (4) leads to a one-dimensional vector Lippmann-
Schwinger equation:

F(z; k‖) = F0(z; k‖)

+
∫
A

dz′ g(z , z ′; k‖) V(z ′, ω) F(z ′; k‖). (10)

The numerical analysis is based on the discretization of
this last Lippmann-Schwinger equation [14].

The source coordinate z′ being positive, for z > 0, the
dyadic g(z , z ′; k‖) is the sum of the dyadic Green tensor
associated to the external medium g0(z , z ′; k‖) and the
surface response gs(z , z ′; k‖) :

g(z , z ′; k‖) = g0(z , z ′; k‖) + gs(z , z ′; k‖). (11)

For z < 0, the dyadic is reduced to one term:

g(z , z ′; k‖) = g′s(z , z
′; k‖). (12)

2.2 The Green’s dyadic for a surface system

We detail here the analytical structure of g(z , z ′; k‖). We
first precise the two possible values of the wavevector com-
ponent along ez (k2

‖ = k2
x + k2

y):

ka =

√
ω2

c2
εa − k2

‖ (13)

ksub =

√
ω2

c2
εsub − k2

‖. (14)
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In the case where z > 0 and z′ > 0, we find for gs(z , z′; k‖):

g0(z, z′; k‖) =
ei ka |z−z′|

2 i ka

(
1− c2

ω2 εa
Q

)
+

c2

ω2 εa
L δ(z − z′) (15)

with

Q =

 k2
x kx ky

|z−z′|
z−z′ kx ka

kx ky k2
y

|z−z′|
z−z′ ky ka

|z−z′|
z−z′ kx ka

|z−z′|
z−z′ ky ka k2

a

 · (16)

The tensor

L =

0 0 0
0 0 0
0 0 1

 (17)

accounts for the depolarization of a discretized cell which
has the shape of a very thin film [16].

The dyadic gs(z , z′; k‖) describing the surface response
when z > 0 is:

gs(z , z′; k‖) =
k2
x

k2
‖
Dxx + k2

y

k2
‖
Dyy

kxky
k2
‖

(Dxx −Dyy) kx
k‖
Dxz

kxky
k2
‖

(Dxx −Dyy)
k2
y

k2
‖
Dxx + k2

x

k2
‖
Dyy

ky
k‖
Dxz

kx
k‖
Dzx

ky
k‖
Dzx Dzz

 (18)

where

Dxx = − c2

ω2 εa
k2

a

ka εsub − ksub εa

ka εsub + ksub εa

ei ka (z+z′)

2 i ka
(19)

Dyy =
ka − ksub

ka + ksub

ei ka (z+z′)

2 i ka
(20)

Dzx =
c2

ω2 εa ka
k‖

ka εsub − ksub εa

ka εsub + ksub εa

ei ka (z+z′)

2 i ka
(21)

Dxz = − c2

ω2 εa
ka k‖

ka εsub − ksub εa

ka εsub + ksub εa

ei ka (z+z′)

2 i ka
(22)

Dzz =
c2

ω2 εa
k2
‖
ka εsub − ksub εa

ka εsub + ksub εa

ei ka (z+z′)

2 i ka
· (23)

For z < 0 and z′ > 0, the dyadic g(z , z ′; k‖) is only
due to the response of the surface g′s(z , z

′; k‖) which
has the same structure as equation (18) but with the
following coefficients:

Dxx = −i
c2

ω2

ka ksub

ka εsub + ksub εa
ei ka z

′−i ksub z (24)

Dyy = − i
ka + ksub

ei ka z
′−i ksub z (25)

Dzx = −i
c2

ω2

ka k‖
ka εsub + ksub εa

ei ka z
′−i ksub z (26)

Dxz = −i
c2

ω2

ksub k‖
ka εsub + ksub εa

ei ka z
′−i ksub z (27)

Dzz = −i
c2

ω2

k2
‖

ka εsub + ksub εa
ei ka z

′−i ksub z. (28)

2.3 Far-field properties

Considering the reflected electric field in the far field
allows some analytical simplifications. In the case of
illumination through the substrate, the reflected field
reads (z < 0):

Er(r) =
1

4 π2

∫
dk‖ fr(k‖) ei k‖·r‖ e−i ksub z (29)

where

fr(k‖) =
∫
A

dz′ g′s(0, z
′; k‖) V(z ′, ω) F(z ′; k‖). (30)

In the simple case where the incident field has the form
of a plane wave, we have of course:

F0(z; k‖) = A ei ksub z δ(q‖ − k‖)

+ A1 e−i ksub z δ(q‖ − k‖) (z < 0) (31)

F0(z; k‖) = A2 ei ka z δ(q‖ − k‖) (z > 0) (32)

where we normalize the TE mode according to:

A = ex (33)

A1 =
ksub − ka

ksub + ka
ex (34)

A2 =
2 ksub

ksub + ka
ex (35)

and the TM mode as follows:

A = − cos θ ey + sin θ ez (36)

A1 =
ksub εa − ka εsub

ksub εa + ka εsub
(cos θ ey + sin θ ez) (37)

A2 =
2 ksub

√
εa
√
εsub

ksub εa + ka εsub
(− cos θt ey + sin θt ez) (38)

θ is the angle of reflection, θt is the angle of transmission,
q‖ = sin θ ey and q = ω2

c2 ε1(z, ω).

For the reflection, the scattered field (29) is then
reduced to (z < 0):

Er(r) =
1

4 π2
[A1 + fr(q‖)] ei q‖·r‖ e−i ksub z . (39)

The reflectivity outside the multilayer arises then as:

R =

∣∣A1 + fr(q‖)
∣∣2

|A|2
· (40)

2.4 Kerr effect

The Kerr effect is described by a rotation of the plane of
polarization of the reflected field relative to the incident
field. A set of cylindrical coordinates (Fig. 1a) based on
the reflected wavevector is introduced by:

fr,ρ(k‖) = fr,y(k‖) sin θ − fr,z(k‖) cos θ
fr,φ(k‖) = fr,y(k‖) cos θ + fr,z(k‖) sin θ

fr,x(k‖) = fr,x(k‖). (41)
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The Kerr rotations Φ′s and Φ′p and the ellipticities Φ′′s
and Φ′′p correspond to the real and imaginary part of the
following ratios:

Φs =
fr,φ(k‖)
fr,x(k‖)

= Φ′s + i Φ′′s (TE) (42)

Φp =
fr,x(k‖)
fr,φ(k‖)

= Φ′p + i Φ′′p (TM). (43)

In this paper, we use the Co as a generic example
of magneto-optical material. The case of the polar mag-
netization will be considered alone because longitudinal
magnetization produces signals which are one order of
magnitude weaker. The polar magnetization corresponds
to an applied static magnetic field which is perpendicular
to the interfaces, thus along the z direction. The polar
magnetization gives the following structure of the dielec-
tric tensor for λ = 633 nm:

εpolar =

 α β 0
−β α 0
0 0 α

 (44)

where the coefficients α = −12.3 + i 18.4 and β =
−0.4 − i 0.1 were found in reference [17,18]. We use
MgF2 and TiO2 for the dielectric materials. MgF2 is an
isotropic material which dielectric tensor can be written
as follows for λ = 633 nm:

εMgF2 =

 1.9 0 0
0 1.9 0
0 0 1.9

 · (45)

The rutile (TiO2) is an anisotropic uniaxial crystal,
this is due to its crystalline structure [19]. The deposition
of thin rutile films is difficult to realize and the anisotropic
behaviour is hard to obtain because its deposition in thin
films imposes its amorphous behaviour. Except for this
problem, we will show in this study, that anisotropy on
thin films can give satisfying results from an optical point
of view. We examine how the reflectivity and also the
Kerr rotation behave facing the optical anisotropy for this
material.

If we align the eigen axis of the rutile crystal along
our coordinate system Oxyz, the dielectric tensor has the
following form:

ε1
TiO2

=

 ε1 0 0
0 ε1 0
0 0 ε2

 (46)

with ε1 = 6.67 and ε2 = 8.24 which are the dielectric per-
mittivities related to the ordinary (ε1) and to the extraor-
dinary (ε2) index of refraction for the HeNe wavelength
(λ = 633 nm).

We can modify the orientation of the principal axis for
the rutile (46) by a circular rotation of 90 degrees along
the (Ox) axis in our coordinate system, it can be written

Fig. 2. For λ = 0.633 µm, reflected energy of a 10 nm
(TM mode: solid line, TE mode: dashed line) and a 60 nm
(TM: dotted dashed line, TE mode: dotted line) Co film de-
posited on a glass substrate as a function of the angle of
incidence.

as follows:

ε2
TiO2

=

 ε1 0 0
0 ε2 0
0 0 ε1

 · (47)

On the same way, we can define another orientation:

ε3
TiO2

=

 ε2 0 0
0 ε1 0
0 0 ε1

 · (48)

The three types of orientation for the principal axis of
the crystal are materialized in the dielectric tensor by the
expressions (46), (47) and (48).

Each one will be studied in order to observe reflectivity
and Kerr rotation changes as a function of the angle of
incidence by the modification of the diagonal terms which
occur in the dielectric tensor of TiO2.

3 Magnetic/dielectric bilayers

3.1 Co/MgF2 bilayer

We have chosen to set a 10 nm Co film thickness on a
glass substrate in order to limit the absorption. Moreover,
this thickness corresponds to a plasmon resonance which
appears for an angle close to 51 degrees in the reflectiv-
ity curve as a function of the angle of incidence for the
TM mode. One must be aware that the natural magne-
tization state of a 10 nm thick Co film is parallel to the
surface. Static fields as high as 2 teslas are needed to pull
the magnetization out of plane. Nevertheless, the 10 nm
Co film can be replaced by Co− Pt or Co−Au ultrathin
multilayers, known to have strong perpendicular magnetic
anisotropy, without affecting the results discussed here.

In this curve (Fig. 2), the virtual modes, responsible
of Perot-Fabry interferences, show up between the critical
angle at 41.8 degrees and 43 degrees as a peak which is
more accentuated compared to a noble metal such as gold
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Fig. 3. For λ = 0.633 µm, (a) reflectivity of a bilayer composed of 10 nm of Co and of 100 nm of MgF2 deposited on a glass
substrate for the two modes: TE (dashed line) and TM (solid line) as a function of the angle of incidence (b) module |Φ| as a
function of the angle of incidence for the two modes: TE (dashed line) and TM (solid line) in the polar magnetization case.

Fig. 4. For λ = 0.633 µm, (a) reflectivity of a bilayer composed of 10 nm of Co and of 200 nm of MgF2 deposited on a glass
substrate for the two modes: TE (dashed line) and TM (solid line) as a function of the angle of incidence (b) module |Φ| as a
function of the angle of incidence for the two modes: TE (dashed line) and TM (solid line) in the polar magnetization case.

Fig. 5. For λ = 0.633 µm, (a) reflectivity of a bilayer composed of 10 nm of Co and of 400 nm of MgF2 deposited on a glass
substrate for the two modes: TE (dashed line) and TM (solid line) as a function of the angle of incidence (b) module |Φ| as a
function of the angle of incidence for the two modes: TE (dashed line) and TM (solid line) in the polar magnetization case.

or silver. The reflectivity, in this angular range, shows ex-
ponential damped oscillations as a function of the Co film
thickness as we have noticed for gold (see Ref. [13]).

The presence of these modes creates reflectivity oscil-
lations as a function of the angle of incidence beyond the
critical angle by addition of a dielectric film on the cobalt
one. Indeed, we will study a bilayer composed of a 10 nm
of Co thin film recovered by a MgF2 dielectric film for
which we vary the film thickness, they are both deposited
on a glass substrate (see Fig. 1b). We will take succes-
sively 100 nm, 200 nm and 400 nm for the different MgF2

film thicknesses (the effective wavelength in the MgF2 is

approximatively λMgF2
eff = 458 nm, these thicknesses corre-

spond to λMgF2
eff /4, λMgF2

eff /2 and λMgF2
eff ). The cobalt thick-

ness was chosen so as to let the energy going through the
Co layer and consequently, to create interferences in the
dielectric film.

In the TM mode, these interferences are materialized
by oscillations in the reflectivity curve as a function of
the angle of incidence by addition to an increasing MgF2

film thickness (see Figs. 3a, 4a and 5a). We can no-
tice that the higher is the dielectric film thickness, the
higher is the number of oscillations which occur in the
reflectivity curve for the TM mode. Thus, it brings to
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the fore the effects due to constructive and destructive
interferences in the dielectric film.

In the TE mode, when the MgF2 dielectric film is miss-
ing, the reflectivity curve does not show any particular
behaviour except its regular increase as a function of the
angle of incidence for a 10 nm Co layer deposited on a
glass substrate. However, the presence of an increasing
MgF2 film thickness modifies the reflectivity curve and
oscillations occur as the TM mode shows. This is due to
multiple reflections in the MgF2 layer (see Figs. 3a, 4a
and 5a), the eigen modes of the system induced by multi-
ple reflections in the dielectric layer influenced the oscilla-
tion behaviours of the reflectivity curve in the TE mode.
At this step, we can conclude that the presence of the di-
electric layer deposited on a thin metallic layer involves
oscillations in the reflectivity curves. This behaviour
is related to constructive and destructive interference
phenomena which occur in the dielectric layer for both
TE and TM modes. In fact, we create an energy mod-
ulation in reflection according to the angle of incidence.
Lower is the index of refraction (ε1), greater is the number
of oscillations due to interferences in the rutile layer. In
the case of the dielectric tensor (46), we can see that the
Kerr rotation and the reflectivity (Figs. 8a and b) have
the same variations of ones in (Figs. 6a and b) for the
isotropic rutile of dielectric permittivity ε1.

As we have seen in reference [13], the Kerr rotation
reacts to the reflectivity fluctuations as a function of the
angle of incidence. The Kerr effect gives minima of reflec-
tivity when the reflectivity is high whereas it is maximum
when the reflectivity is low in its variation of the angle of
incidence (see Figs. 3b, 4b and 5b). We can notice that
further minima and maxima occur in the Kerr rotation
curve as a function of the angle of incidence if we com-
pare those found in the reflectivity curves for increasing
MgF2 film thicknesses in both TE and TM modes. More-
over, we can notice that the Kerr rotation level stays ap-
proximatively constant for the several dielectric film thick-
nesses and for both modes of polarization, TE and TM
(Figs. 3b, 4b and 5b). The minima observed in the Kerr
rotation curves rather correspond to a vanishing Kerr ef-
fect in its variation as a function of the angle of incidence.
Moreover, these cancellations of the Kerr effect increase
as the MgF2 film thickness becomes higher (Figs. 3b, 4b
and 5b). So, we can notice that the addition of a dielec-
tric film on a thin magneto-optical one tends to cancel
the Kerr effect on several angles for greater MgF2 film
thicknesses. Moreover, these phenomena appear not only
in the TM mode but also in the TE mode where a Kerr
rotation modulation is created as a function of the angle
of incidence. An important effect can be noticed: we can
see that the minima of the Kerr rotation appear for the
same angles in both TE and TM polarizations and for
each MgF2 film thicknesses, this confirms the presence of
multiple reflections in the dielectric layer and this effect
can be thus attributed to interference in the MgF2 thin
film. A cover by a dielectric layer therefore creates oscil-
lations in the reflectivity and in the Kerr rotation as a
function of the angle of incidence under the condition of

total reflection, the same effect can also be brought to the
fore in the specular reflection in the air.

3.2 Co/TiO2 bilayer

As we have studied MgF2, we are going to examine the
reflectivity and also the Kerr rotation for a system com-
posed by two layers Co/TiO2 with a 10 nm film thickness
of cobalt and a 450 nm of TiO2 (the effective wavelength
in TiO2 is approximatively λTiO2

eff = 240 nm, this film
thickness corresponds to 2 λTiO2

eff ) (Fig. 1b).
According to the orientation of the TiO2 principal axis,

the reflectivity and the Kerr rotation have significant os-
cillations as a function of the angle of incidence. All the
reflectivity curves show oscillations in both TE and TM
modes (see Figs. 8a, 9a and 10a) as we have seen in the
preceding section for MgF2 which has an index of refrac-
tion lower than the rutile one (nMgF2 = 1.38).

As a comparison, we calculated the reflectivity and
the Kerr rotation relative to a Co/TiO2 system where we
consider the rutile as an isotropic material of dielectric
permittivity ε1 (Figs. 6a and b) and of dielectric permit-
tivity ε2 (Figs. 7a and b). We can thus conclude that,
for the TM mode, the y-component is major compared
to the z-component of the electric field reflected by the
bilayer structure, the rutile anisotropy is thus more diffi-
cult to characterize in this case. In the case of the dielec-
tric tensor (47), the reflectivity and also the Kerr rotation
(Figs. 9a and b), in the TE mode, behave as the rutile
is isotropic with a dielectric permittivity ε1. Whereas for
the TM mode, the reflectivity and the Kerr rotation have
similar behaviors than Figure 7 where we consider rutile
as an isotropic material of dielectric permittivity ε2. In
this case, we see effectively main differences in the reflec-
tivity and in the Kerr effect compared to results discussed
above for the orientation (46) (see Fig. 8). In the case of
the dielectric tensor (48), the angular variation of the re-
flectivity and of the Kerr rotation (Figs. 10a and b) behave
as the rutile is an isotropic material of dielectric permit-
tivity ε2 for the TE mode since this permittivity acts in
the dielectric tensor on the x-component of the incident
electric field. Whereas for the TM mode, the curves be-
have as if the rutile is an isotropic material of dielectric
permittivity ε1.

The comparison between the orientations (47) and (48)
brings to the fore, as we have noticed before, the major
aspect of the y-component of the electric field facing the
z one for the TM mode.

We see thus that, in the case of a low permittivity, os-
cillations are more emphasized in the reflectivity and in
the Kerr rotation as a function of the angle of incidence
(Fig. 6) whereas these oscillations due to multiple reflec-
tions in the dielectric film tend to disappear when the
dielectric permittivity is higher (Fig. 7) in the reflectiv-
ity and in the Kerr effect for the same rutile film thick-
ness of 450 nm. The orientation of the crystal eigen axis
plays an important role in the reflectivity and in the Kerr
rotation curves as a function of the angle of incidence,
consequently, this method can determine the ordinary
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Fig. 6. For λ = 0.633 µm, reflectivity (a) and module |Φ| (b) of a bilayer composed of 10 nm of Co and of 450 nm of isotropic
TiO2 of dielectric permittivity ε1 = 6.67 deposited on a glass substrate for the two modes: TE (dashed line) and TM (solid
line) as a function of the angle of incidence.

Fig. 7. For λ = 0.633 µm, reflectivity (a) and module |Φ| (b) of a bilayer composed of 10 nm of Co and of 450 nm of isotropic
TiO2 of dielectric permittivity ε1 = 8.24 deposited on a glass substrate for the two modes: TE (dashed line) and TM (solid
line) as a function of the angle of incidence.

Fig. 8. For λ = 0.633 µm, reflectivity (a) and module |Φ| (b) of a bilayer composed of 10 nm of Co and of 450 nm of TiO2

deposited on a glass substrate for the two modes: TE (dashed line) and TM (solid line) as a function of the angle of incidence
for the orientation 46 of TiO2.

and the extraordinary index of refraction for an
anisotropic layer deposited on a substrate and the confir-
mation can be realized by the magneto-optical Kerr effect.

As we have noticed before, minima of Kerr rotation
occur at the same angles for both TE and TM modes.
We can see, as we have noticed before, that the Kerr ef-
fect vanishes simultaneously in TE and TM modes for the
orientation (48) (Fig. 10), this effect is due to the interfer-
ences created by multiple reflections in the rutile dielectric
layer.

For the same film thickness, an increase of index of
refraction for a cover layer (MgF2 and TiO2) involves a

decrease in the number of peaks relative to multiple re-
flections in the layer when analysing both reflectivity and
Kerr rotation curves. For indices close to the substrate
one, oscillations disturb the Kerr rotation curves and they
are responsible for the cancellations of the Kerr effect for
several angles of incidence according to the film thick-
ness. This effect is of great interest for the determination
of magnetization inside the magneto-optical Co layer be-
cause we can cancel the rotation of polarization phenom-
ena which are optical properties of anisotropic materials
and we could, thanks to these interferences, well-define
the magnetization of the considered layer by an angular
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Fig. 9. For λ = 0.633 µm, reflectivity (a) and module |Φ| (b) of a bilayer composed of 10 nm of Co and of 450 nm of TiO2

deposited on a glass substrate for the two modes: TE (dashed line) and TM (solid line) as a function of the angle of incidence
for the orientation 47 of TiO2.

Fig. 10. For λ = 0.633 µm, reflectivity (a) and module |Φ| (b) of a bilayer composed of 10 nm of Co and of 450 nm of TiO2

deposited on a glass substrate for the two modes: TE (dashed line) and TM (solid line) as a function of the angle of incidence
for the orientation 48 of TiO2.

study. The interferences are useful for the determination
of a crystal eigen axis on account of the reflected energy
curves and of the Kerr effect which changes due to the ori-
entation of the principal axis of a given crystal compared
to our coordinate system.

4 Dielectric/magnetic bilayers

4.1 Interferential modes in dielectric and isotropic thin
films

In this second part, we want to show other resonance
phenomena, those which occur in the components used
for classical optics. We will show them in the context of
magneto-optics. First, we will study the Perot-Fabry inter-
ferometer used in laser optics to calibrate wavelength spec-
tra [20]. A Perot-Fabry interferometer is generally com-
posed of a glass blade covered by a protective layer [21].
The system is illuminated in the air with an arbitrary an-
gle of incidence and multiple reflections occur in the glass
blade.

Here, we will study a similar system (see Fig. 1c) com-
posed by a 2 µm dielectric MgF2 film thickness (this one
corresponds to 5 λMgF2

eff ) deposited on a glass substrate.
We recovered the MgF2 film by a 100 nm Co layer (see
Fig. 1b). This Co thickness was chosen so as to satu-
rate the cobalt layer reflectivity. This saturation is also
necessary in order to eliminate, first, the virtual modes

which drastically modify the interferential behaviours in
the MgF2 layer and second, the transmission by such a
system.

Multiple reflections are produced in the MgF2 layer
and they create oscillations in the reflectivity curve as a
function of the angle of incidence (see Fig. 11a). In the
following curves (Figs. 11a and b), we calculate the re-
flectivity and also the Kerr rotation of this system as a
function of the angle of incidence in the polar magneti-
zation case. This study is interesting for the resonances
of the system because interferential effects in the MgF2

layer give an increase of the Kerr effect as we have no-
ticed in the preceding section. Two principal effects are
brought to the fore. First, oscillations occur in the reflec-
tivity curve according to the angle of incidence for both
TE and TM modes (Fig. 11a). Several interesting angles
occur in these curves: one is similar to the Brewster an-
gle corresponding to the cobalt layer for the MgF2/Co
interface and another “Brewster” one is attributed to the
glass/MgF2 interface. These angles appear in the reflectiv-
ity by the curves wrapping oscillations due to interferences
produced in the MgF2 layer for the TM mode. The criti-
cal glass/MgF2 angle appears at 67 degrees. Beyond this
angle, the wave is totally reflected and, consequently, the
reflectivity is equal to unity. For the TE mode, we observe
an increase of the reflectivity in which oscillations occur as
a function of the angle of incidence until the glass/MgF2
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Fig. 11. For λ = 633 nm, (a) variation of the reflectivity as a function of the angle of incidence for both TM (solid line) and
TE (dashed line) modes for the system of Figure 1 c (b) variation of |Φ| as a function of the angle of incidence for both TM
(solid line) and TE (dashed line) modes.

critical angle beyond which the reflectivity is stabilised
to one. Second, the Kerr rotation increases until angles
similar to “Brewster’s” beyond which it decreases accord-
ing to the angle of incidence. Oscillations also occur in
the Kerr effect and as the reflectivity decreases, the light
wave goes through the cobalt layer and consequently, mul-
tiple reflections in this layer increase the Kerr rotation.
Therefore, the Kerr effect is increasing in the MgF2 film
thickness and also in the glass substrate.

We do not have a vanishing Kerr effect in its varia-
tion as a function of the angle of incidence on the oppo-
site of what we had in Section 3.1. This brings to the fore
the comparison between a bilayer Co/MgF2 and MgF2/Co
one thanks to the reflectivity and the Kerr rotation which
do not have the same behaviours according to the an-
gle of incidence. This also proves that the interferences
can cancel the rotation of polarization effects (case of
Co/MgF2 bilayer) whereas they could give Kerr signals
(case of MgF2/Co bilayer). We can see that both bilayers
involve interferences in the dielectric MgF2 layer but they
do not induce similar magneto-optical Kerr signals. Now,
we will show another type of component which creates
eigen modes in a system: the planar waveguides. These
components (Perot-Fabry interferometer and waveguides)
create eigen modes and thus, they are interesting in a
magneto-optical point of view because they allow the in-
crease of the Kerr effect.

4.2 Magneto-optical planar waveguides

As the magneto-optical Perot-Fabry interferometer, we
will study the case of guided optics in planar geometry.
Particularly, our study will show the effects on magneto-
optical planar waveguides. A waveguide is generally com-
posed of a guiding layer for which the index of refraction is
n2 deposited on a substrate (n3) and they are in a medium
of index of refraction n1. In our case, the guiding layer will
be rutile, the substrate is glass and they are in the air with
two incident modes of polarization TE and TM. In order
to have optical guiding in the layer (n2), we must have
n2 > n3 ≥ n1 which is our case. In the case of waveg-
uides, for a given guiding layer thickness, the reflectivity
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Fig. 12. Description of a planar waveguide in a general case.
i is the angle of refraction in the layer of index n2.

shows minima and maxima as a function of the angle of
incidence, these minima correspond to pseudo-modes of
propagation in the guiding layer which can modify the
magneto-optical Kerr signals.

4.3 Definition of the modes in a planar waveguide

We call i1 the angle beyond which there is total reflection
on the rutile/air interface, it is defined by:

sin i1 =
n1

n2
·

On the same way, we call i2 the angle beyond which
there is total reflection on the glass/rutile interface, it can
be written as:

sin i2 =
n3

n2
·

We call i the refracted angle in the rutile layer (see
Fig. 12).

In a general case, three types of modes are defined.
First, for i < i1, classical interferences are produced in
the rutile layer, this case is similar to the Perot-Fabry
interferometer which was studied previously. Second, for
i1 < i < i2, this is the case of substrate modes, a to-
tal reflection is produced on the rutile/air interface thus
light beams are reflected in the layer and transmitted
in the glass substrate. Finally, for i > i2, these are
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Fig. 13. For λ = 633 nm, variation of the reflectivity (a) and of the module |Φ| (b) as a function o f the angle of incidence for
both TM (solid line) and TE (dashed line) for the system of Figure 1c and for an isotropic system ε1 = 6.67.

Fig. 14. For λ = 633 nm, variation of the reflectivity (a) and of the module |Φ| (b) as a function of the angle of incidence for
both TM (solid line) and TE (dashed line) for the system of Figure 1c and for an isotropic system ε2 = 8.24.

the guided modes, total reflection conditions are realized
on the glass/rutile and also on the rutile/air interfaces
which forbid a light beam to go out of the guiding layer,
we must thus inject the light by the side of the guiding
layer.

4.4 Magneto-optical rutile waveguide modes

We set a 1.1 µm rutile guiding layer (this thickness cor-
responds to 5 λTiO2

eff ) on a glass substrate covered by a
100 nm of Co in order to realize the condition of total
reflection in the rutile/metal interface (see Fig. 1c). We
observe substrate modes in the reflectivity curves as a
function of the angle of incidence for λ = 633 nm. If we
take the first orientation (46), we calculate the reflectivity
and also the Kerr rotation as a function of the angle of
incidence for both TE and TM incident modes (Fig. 15).

We illuminate the layers through the glass substrate
with two modes: TE and TM associated with the laser
beam. In this approach, the reflectivity shows minima and
maxima as a function of the angle of incidence correspond-
ing to the interferences in the rutile layer.

For the same reason (as the magneto-optical Perot-
Fabry interferometer case), the 100 nm Co film thickness
was chosen to saturate the metallic layer in order to elim-
inate effects due to the virtual modes and/or plasmon
resonance of thin metallic film. This kind of resonances
could modify the signals obtained in reflectivity and also
in Kerr rotation for the planar waveguide.

In this approach, we want to bring to the fore not
only magneto-optical effects due to the introduction of
the cobalt layer but also the anisotropy effects due to the
crystalline structure of rutile.

We want to observe how both reflectivity and Kerr
rotation react when the principal axis of the crystal is ro-
tating in our coordinate system (Oxyz). We have already
defined the dielectric tensors for rutile (46), (47) and (48).
As the Co/TiO2 bilayer case, we calculated, as a refer-
ence, the reflectivity and the Kerr rotation of the system
TiO2/Co by supposing that the rutile is an isotropic ma-
terial of dielectric permittivity ε1 = 6.67 (Fig. 13) and of
dielectric permittivity ε2 = 8.24 (Fig. 14). We can notice
that the reflectivity behave as the material is isotropic of
dielectric permittivity ε1 for both modes of polarization
(Figs. 15a and 13a). In the TE mode, the reflectivity has
the same behaviour as rutile is an isotropic medium of
dielectric permittivity ε1 because the x-component of the
reflected electric field dominates the other ones. We can
also notice that, according to the results in the TM mode,
the y-component of the reflected electric field is greater
than the z-component as we have noticed before in the
case of the Co/TiO2 bilayer in Section 3.2. The reflectiv-
ity shows minima, they correspond to the resonance modes
of the system and particularly to the substrate modes de-
scribed previously (Fig. 15a). The Kerr rotation reacts
drastically when resonances occur in the system. Maxima
for the Kerr rotation (Fig. 15b) correspond to the sub-
strate modes which we found in the reflectivity curve as
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Fig. 15. For λ = 633 nm, (a) variation of the reflectivity as a function of the angle of incidence for both TM (solid line) and
TE (dashed line) modes (b) variation of |Φ| as a function of the angle of incidence for both TM (solid line) and TE (dashed
line) for the system of Figure 1c for an anisotropic system with the dielectric tensor (46).

Fig. 16. For λ = 633 nm, (a) variation of the reflectivity as a function of the angle of incidence for both TM (solid line) and
TE (dashed line) modes (b) variation of |Φ| as a function of the angle of incidence for both TM (solid line) and TE (dashed
line) for the system of Figure 1c for an anisotropic system with the dielectric tensor (47).

Fig. 17. For λ = 633 nm, (a) variation of the reflectivity as a function of the angle of incidence for both TM (solid line) and
TE (dashed line) modes (b) variation of |Φ| as a function of the angle of incidence for both TM (solid line) and TE (dashed
line) for the system of Figure 1c for an anisotropic system with the dielectric tensor (48).

a function of the angle of incidence (see Fig. 15a). This
increase of the Kerr effect around the eigen modes of the
system is consistent with results obtained previously in the
Co/Au systems in [13] and also with the magneto-optical
Perot-Fabry interferometer of the preceding section. If we
take the case of the second orientation (47) of the eigen
axis for the rutile, we can notice that for the TE mode, the
reflectivity behaves as the rutile is an isotropic medium of
dielectric permittivity ε1 whereas for the TM mode, it

reacts as an isotropic material of dielectric permittivity
ε2 (Fig. 16a) This confirms that the parallel components
of the reflected electric field are greater than the perpen-
dicular one. This effect was already seen in the case of a
Co/TiO2 bilayer. In the TM mode, the number of minima
is not the same in the reflectivity curve as a function of the
angle of incidence compared to the preceding orientation
(46) (see Figs. 15a and 16a). Thus, the optical orienta-
tion of the crystal determines the reflectivity according
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to the incident polarization mode which we chose. The
Kerr rotation still increases around the resonance modes
of the system (Fig. 16b). The number of minima in the
reflectivity and also the number of maxima in the Kerr
rotation, when using different orientations of the principal
axis, show a modification in the crystallographic orienta-
tion of the rutile layer in the TM mode. This situation is
experimentally significant because we can determine accu-
rately the crystallographic anisotropy of a dielectric film.
In the case of the third dielectric tensor for the rutile (48),
we notice that in the TE mode, the reflectivity varies as
the system is an isotropic medium of dielectric permittiv-
ity ε2 whereas for the TM mode, it behaves as an isotropic
material of dielectric permittivity ε1 as a function of the
angle of incidence (Fig. 17a). Maxima of Kerr rotation cor-
respond to the several substrate modes for this waveguide
(Fig. 17b). As we have noticed in the preceding section,
the Kerr effect does not vanish for different angles whereas
this behavior was observed for the Co/TiO2 bilayer.

5 Conclusion

Two crucial points are brought to the fore in this paper.
First, the Kerr rotation drastically reacts for all resonance
phenomena in the system by several peaks corresponding
to reflectivity minima. Using the components of classical
optics (i.e. the interferences, the substrate modes and
also the plasmon resonance in a metal case), the Kerr
effect increases around the resonances. This effect,
which was purely energetical, can be experimentally
observable by the rotation of polarization in reflection
according to the incident polarization. The increase
of the Kerr rotation and the reflected energy can be
measured around the resonances in the far-field. It
shows an experimental facility for the setups. Second,
we separate two types of anisotropy: the anisotropy
effects induced by the crystalline structure (such as an
uniaxial crystal (rutile)) and the Kerr rotation which
is an anisotropic effect induced by applying an external
magnetic field. This classical approach of calculation,
for the reflected energy and for the Kerr rotation,
described accurately the crystal orientation compared to
the coordinate system of the surface. This study can be
extended to biaxial crystals. Thanks to this procedure,
we realise a characterisation method of thin films in an
optical way. This method is valid if the deposition of the

thin film keeps the direction of the eigen axis for crystal
monolayers deposited on a glass substrate.

Professor O. Marti and the members of Abteilung Experi-
mentelle Physik are acknowledged.
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